
,

ADVANCED TOOLS AND mCHNIQUES FOR FORMAL
TECHNIQUES IN AEROSPACE SYSTEMS

Final Report

Submitted to:

National Aeronautics and Space Administration
Langley Research Center

Hampton, VA 23681-2199

Attention:

Benjamin DiVito

Submitted by:

John C. Knight
434.982.2216

kmght@cs.virginia. edu

Department of Computer Science
University of Virginia

15 1 Engineer’s Way, PO Box 400740
Charlottesville, VA 22904-4740

June 2005

,

Final Report NAG-1 -02 101

1. INTRODUCTION
This is the final technical report for grant number NAG-1-02101. The title of this grant

was “Advanced Tools and Techniques for Formal Techniques In Aerospace Systems”. The

principal investigator on t h i s grant was Dr. John C. Knight of the Computer Science

Department, University of Virginia, Charlottesville, Virginia 22904-4740. This report

summarizes activities under.*e grant during the period 7/01/2002 to 9/30/2004.

This report is organized as follows. In section 2, the t echca l background of the grant

is summarized. Section 3 lists accomplishments and section 4 lists students funded under

the grant. In section 5, we present a list of presentations given at various academic and

research institutions about the research conducted. Finally, a list of publications generated

under this grant is included in section 6.

Department of Computer Science Page 1 University of Virginia

Final Report NAG-1 -02 101

2. PROJECT OVERVIEW

Overview
One of the reasons that formal methods are still being adopted only slowly by commercial

software companies is the lack of comprehensive tool support. Although many tools have

been developed, they are, in almost all cases, outgrowths of research programs and are o f

limited capability. It is often the case that tools implement a novel concept or an advanced

form of analysis yet lack various common functions. Similarly, tools often provide support

for a single advanced capability, such as model checking or theorem proving, but offer no

integrated support for a range of techques. Ths is despite the fact that multiple tech-

niques might be needed in any given circumstance of use.

In previous research, we have identified a number of difficulties with the tools and

techniques that have been developed for formal methods, and we have developed prelimi-

nary solutions to many of these difficulties. In particular, we have developed a toolset that

i s designed to provide integrated and comprehensive specification support for developers

of critical systems. T h s existing toolset incorporates support for preparation of specifica-

tions that include material in both a natural language and a formal language. Of particular

import is the support that the toolset provides for combined analysis of natural and formal

languages.

Our current research has built upon this previous research, and we have expanded and

extended formal techniques and their applicability. Our research achieved the following

goals:

Development of advanced tools to support the use of formal methods in aerospace

systems.
This component of the research program built on our previous research in the area
of tools development. We have developed an enhanced versions of our tools by
integrating the PVS system into our existing toolset.

~

Development of advanced techniques for the application of formal methods in

aerospace systems.
This component of the research program has extended our previous research on the
practical application of formal techniques by applying previous results and the
new tools developed as part of this project to a major aviation safety program,

Department of Computer Science Page 2 University of Virginia

Final Report NAG-1-02 101

NASA's Runway Incursion Prevention System (RIPS).

Previous Work
Adoption of formal techniques is viewed as a high risk undertaking by project managers in

all areas of aviation and space science. The consequences of failure in these application

areas are such that development risks must be minimized. This understandable position

makes the challenge of trmsitioning formal techniques to practice especially difficult.

Were formal methods to be applied to a project and there were to be subsequent schedule

delays or technical inadequacies, the impact on future use would be extreme.

When formal techniques have been applied to safety-critical systems, the results have

generally been very favorable, but there remain many barriers to routine use [4, 1, 21.

Many of these barriers have been addressed, but, in recent research, additional and sub-

stantially more fundamental problems have been exposed [3]. One of the primary foci of

the problem is tools because: (1) tool support is generally less than it needs to be; and (2)

tools are needed to support new ideas in both the theory and process of specification and

analysis.

A second area of concern is the detailed process that is followed during the creation of

appropriate specifications for safety-critical applications such as those that arise in avia-

tion safety. Formal techniques require a different approach to traditional ad hoc methods

based on natural language for several reasons, specifically:

the formal notations themselves are unfamiliar;

the use of those notations is unfamiliar;

analysis capabilities exist for formal notations that are unavailable with natural
languages;

any specification xmst contain both a farmal and informal part, and these parts
must be complementary; and

formal techniques must coexist with informal techques since wholesale replace-
ment is quite impractical.

Given these issues, it is clear that significant attention must be paid to the way that for-

mal techniques are used. New processes need to be developed, and new comprehensive

specification structures need to be developed that integrate all the necessary elements

Department of Computer Science Page 3 University of Virginia

Final Report NAG-1-02 101

properly. Tool support for this specific area is also necessary.

Advanced Tools for Practical Formal Specification
Tools to support formal notations must be at least as powerful as those that support infor-

mal notations. In addition, they must not impede other existing tools or techniques. These

imprecise statements have been made rigorous in a previously developed evaluation

framework [4,1]. The criteria in the evaluation framework were derived from the software

lifecycle, and the roles of specific formal techniques were studied in each lifecycle phase.

The result of this process was an extensive list of criteria deemed necessary for the suc-

cessful application of formal techniques, and many of the criteria apply to support tools.

There are too many criteria to repeat here, but the following are a representative subset of

those that apply to support tools for formal specification?:

General:

The toolset must be capable of manipulating commercial specifications written in
more than one notation using reasonable resources.
The toolset must provide state-of-the-art analysis of the formal notations that are
used and either support analysis of other necessary notations or interface with
other tools used in specification documentation.

Usability:
The toolset must support routine development requirements such as editing, print-
ing and file manipulation, and have the same “look and feel” as other tools being
used.
The toolset must tolerate incomplete specifications and support navigation through
the specification.

Software Lifecycle:
The toolset must support specification development by a team, and the manipula-
tion and analysis of specifications in parts (in the sense of separate compilation of
source programs).
The toolset must support the other phases of software development (design, imple-
mentation, verification, etc.) by providing necessary information to and interfacing
with support tools in these phases.

7. Some of the criteria list here have been reworded from their original form for clarification and brevity.

Department of Computer Science Page 4 University of Virginia

Final Report NAG-1-02101

The complete list of requirements is quite formidable, and many of them are difficult

to meet because of the extensive support that is implied. Developing tools to support the

use of formal techniques is a major challenge. A large part of this challenge arises from

the need for new tools to provide a wide range of customarily-available features. For

example, formal specifications are complex documents, and developers of such specifica-

tions appreciate the value of innovative analysis, but must be able to perform routine

manipulations conveniently.

Implementing these routine facilities, the “superstructure” of a tool [7], requires enor-

mous resources-frequently more than are needed to implement the innovation that is at

the heart of the tool. Ths has led to many tools being developed with only a limited super-

structure thereby limiting the exploitation of their innovation. This situation contrasts

sharply with the use of sophisticated desktop publishing systems to manipulate natural

language documents-even documents that are artifacts of the software development pro-

cess.

A second reason why tools to support formal methods are especially challenging is

that the tools required are in many ways different from the majority of software tools that

a developer uses in a traditional development process. If the full power of a formal nota-

tion is to be realized, for example, then this requires the availability of:

a theorem-proving system.

We have developed an experimental toolset called Zeus that initially supported the

development of formal specifications in Z and which has been extended to support PVS as

a result of this project. Our goal in the design of Zeus is to develop a toolset that: (a) sup-

ports the development of complete specifications that contain large formal elements; (b)

provides all the routine (mundane) facilities usually found in modem tools; and (c) makes

provision for the integration of Zeus with other tools commonly used in the lifecycle.

a sophisticated text editor and formatter to deal with the natural language;

an editing and formatting facility for the formal aspects of the notation;

a syntax and type-checking system for the formal language; and

The design of Zeus is shown in Figure 1. The core of the design is a database that

maintains information about an open specification. Zeus can be extended easily by intro-

Department of Computer Science Page 5 University of Virginia

Final ReDort NAG- 1-02 101

Other
Tools Lifecycle

Tools

A -
Framemaker Specification Database
I- \ ,

Representation tion Facts

Fig. 1. Present design of the Zeus toolset

ducing new functionality into the database.

Zeus is built using three major software systems as components-FrameMaker, an

industrial desktop publishing system, Z/EVES, a mature and powerful analysis system for

2, and the PVS system. A specification that is manipulated by Zeus is a text document into

which Z text or PVS text has been included. Zeus provides a seamless connection between

FrameMaker and ZEVES or FrameMaker and PVS, and supplements these systems with

a variety of additional functions that facilitate the use of 2 and PVS.

The present version of Zeus is still a prototype, but it allows: (a) the evaluation of the

concept of tool development based on integration of major existing software systems; (b)

the evaluation of the utility of a high performance integrated toolset that supports the

development of specifications in the 2 or PVS styles; and (c) the provision of a testbed for

evaluation of concepts being developed in the use of natural language in specification.

It has become clear as a result of early experience with Zeus that it meets the goals set

for it, and that it facilitates a new paradigm for specification development. The availability

of a sophisticated editing facility for a formal notation that also pennits syntax and type

checlung has promoted an approach to specification development that has two basic

phases. In the first phase, the developer of the specification operates in a manner much

like a programmer in a high-level language. The specification is edited and then the syntax

and type rules are checked, and these steps are repeated in an iterative process. Once the

Department of Computer Science Page 6 University of Virginia

Final Report NAG-1-02101

Iteration

Iteration 0
Fig. 2. Comprehensive toolset for formal specification.

developer becomes satisfied that the specification is mostly complete and that preliminary

analysis is complete, he or she turns to more extensive analysis of the specification-a

phase in which theorems about the specification might be stated and proofs attempted.

In dealing with the introduction of formal techniques into industrial development, we

hypothesize that the first of the two phases just outlined will receive the most attention.

Industrial developers who are new to formal specification will naturally focus their atten-

tion on specification building initially and only progress to analysis after experience is

gained. These two phases, and the fact that they will be adopted by industrial developers

in series, suggest a structure for specification support tools in whch specific interfaces are

provided for the two phases. This is exactly the way that Zeus is designed.

Advanced Application Techniques
In previous research, we have developed a linguistic model that explains many of the

observed problems in the accurate specification of safety-critical systems [3]. We have

also proposed approaches derived from the model that are designed to try to alleviate these

problems. Some of these approaches benefit from tool support, and so tools that provide

the necessary support and analysis have been built into Zeus.

We have also developed a comprehensive structure for specifications that includes

Department of Computer Science Page 7
~ ~~

University of Virginia

Final ReDort NAG-1 -02 10 1

both formal and informal parts in a precise form. This structure includes models that

define the semantics of the operational domain, and that define the mapping between the

symbols used in a formal specification and their interpretation in the real world.

The structures that have been worked out do not apply solely to specification. In fact,

they should be applied to all software lifecycle artifacts including designs and implemen-

tations. The reason is that all artifacts should be thought of as merely a different form of a

formal specification. Thus the development of a software system should really be thought

of as the development of a more substantial entity that combines a formal part and infor-

mal part.

The conclusion that we have reached is that a new type of software artifact should be

viewed as the goal in what is now called software development. This artifact, termed a sit-

uatedformalism, combines the following three components into a consistent and compre-

hensive entity:

Function Map
The function map is a precise statement of the desired hnctionality. It is the only
part of the situated formalism that can be entirely stated in a formal language
although it need not be. The desired functionality can be stated in a formal lan-
guage such as PVS, 2, or C++, but it could also be stated in an informal language
but without the benefit of most forms of analysis. The function map is what has
been thought of traditionally as the goals in s o h a r e development. For example, a
function map at a high level is what has typically been referred to as a specifica-
tion. A function map at a lower level is what has typically been referred to as a pro-

gram.

Domain Map

The domain map is a comprehensive statement of the domain knowledge needed
to understand the real-world meaning of the function map. Since the function map
is, by definition, describing a logical function, there is no real-world meaning
within the function itself.

ModelMap

The model map documents the relation between symbols used in the model
described in the function map and the various concepts in the real world that are
described in the domain map. It acts, therefore, as the link between the function

Department of Computer Science Page 8 University of Virginia

. .
Final Report NAG-1-02101

map and the domain map.
The concepts developed for the situated formalism have been evaluated in preliminary

experiments [6]. The target of that preliminary evaluation was a production surgical plan-

ning system for radiation oncology. That part of the system which computes the radiation

dose was developed as a situated formalism and the whole activity evaluated. The situated

formalism was initially created at the level of a specification and a refinement was then

built at the level of an executable program. The refined version was executed and checked

against the production software.

The results of the preliminary experiments were basically in two areas: (1) overall

confirmation of the basic concepts behind the situated formalism; and (2) a series of

improvements to the original idea that enabled changes to be made thereby bringing the

ideas closer to practical use. In the research undertaken for this project, much more experi-

ence was gained with the concept of the situated formalism by applying it to the NASA

FUPS system. Details are documented in the papers written during this project and in sec-

tion 3.

Research Summary
The research that we have conducted is in the areas of: (1) advanced tool development;

and (2) assessment of the tools and the situated formalism. The tools that we have devel-

oped were based on the Zeus toolset, and they primarily involve integration of the PVS

system with Zeus. The assessment that we undertook was based upon a case study using

the Runway Incursion Prevention System.

Comprehensive Tool Support for Formal Techniques
The present version of the Zeus toolset is fully operational and provides comprehensive

support for development of specifications in 2 or PVS. The necessary syntax checking,

type checking, and theorem-proving capabilities are supplied by Z/EVES, a product of

ORA (Canada), and the PVS system, a product of SFU International.

We have extended Zeus by adapting it to provide an interface to PVS. The approach

taken was to generalize the current architecture so that both analysis systems will be sup-

ported by separate versions of Zeus.

The Zeus architecture has been intentionally created to permit extensions of the type

Department of Computer Science Page 9 University of Virginia

Final Report NAG-1-02101

Win do ws Client Unix Server

Fig. 3. Zeus PVS Toolset Architecture

proposed. The archtecture of the new version is summarized in Figure 3. The platform

upon which the Zeus system operates is Microsoft Windows but the analysis system can

operate on any platform that is required. This is possible because communication between

the major components of Zeus and the analysis system is via standard sockets. Thus, it is

possible (and, in fact common) for the Zeus interface to operate on a Windows worksta-

tion while Z/EVES or PVS operates on a Unix-based server. Finally, Zeus supports the 2

and PVS character sets.

The original and current SRI PVS interface is EMACS and is very character oriented.

An important aspect of the present interface is its relative simplicity. The way in which

PVS is controlled is via simple commands that the user types. With the extensive use of

what amount to keyboard shortcuts, PVS is very flexible and convenient for experienced

users. The Zeus command interface, on the other hand, is mostly based on menus and sim-

ilar graphic entities. We have implemented a suitable PVS interface that, as far as we can

tell, does not limit the way in which users are able to interact with PVS.

Some minor changes to PVS were made to accommodate this development activity.

These changes were made by SRI international working with developers at the University

Department of Computer Science Page 10 University of Virginia

Final Report NAG-1-02 101

of Virginia.

The result of the integrated system is a toolset that provides all the WYSIWYG editing

and formatting capabilities that Zeus supports along with the analysis capabilities of PVS.

SpeciJication Case Study
In order to make the tools and techniques developed as part of this research project really

useful to developers, the ideas were evaluated. We conducted a case study using RIPS as

the system studied. The case study consisted of building a situated formalism for RIPS, at

the level of a specification. Our goals with this activity were to further refine and demon-

strate the situated formalism concept and the Zeus tools.

Department of Computer Science Page 11 University of Virginia

Final Report NAG- 1-02 10 1

REFERENCES
1. C.L. DeJong, M.S. Gibble, J.C. Knight, and L.G. Nakano. Formal Specification: A Systematic

Evaluation. Technical Report CS-97-09, Department of Computer Science, University of Vir-
ginia, Charlottesville, VA, June 1997.

2. M.S. Gibble and J.C. Knight. Experience Report Using PVS for a Nuclear Reactor Control
System. Technical Report CS-97-13 , Depament of Computer Science, University of Virginia,
Charlottesville, VA, June 1997.

3. K. Hanks, J. Knight, and E: Strunk. Erroneous requirements: a linguistic basis for their occur-
rence and an approach to their reduction. Proceedings of the 26th Annual IEEE NASA Soft-
ware Engineering Workshop, pages 11 5-1 19, Greenbelt, h4D (200 1).

4. J.C. Knight, C.L. DeJong, M.S. Gibble, and L.G. Nakano, Why Are Formal Methods Not Used
More Widely? Fourth NASA Formal Methods Workshop, Hampton, VA (September 1997).

5 . R. Lutz. halyzing software requirements errors in safety-critical, embedded systems. Pro-
ceedings of the IEEE International Symposium on Requirements Engineering, pages 126- 133.
IEEE Computer Society Press, January 1993.

6. E.A. Strunk. The Program+: Defining the Role of Natural Language in a Software Product,
MS Thesis, Department of Computer Science, University of Virginia (May 2002).

7. K. Sullivan and J.C. Knight. Experience Assessing an Architectural Approach to Large-Scale
Systematic Reuse. Proceedings ICSE 18: Eighteenth International Conference on Sofiare
Engineering, Berlin, Germany (1 996).

Department of Computer Science Page 12 University of Virginia

Final Report NAG-1-02 101

3. ACCOMPLISHMENTS
Accomplishments under this grant are summarized in this section. Details are contained in

the various publications that have been generated (see section 6) or in documents that are

being prepared for’ publication.

Achievements Specific to the RIPS System

Reverse engineered a PVS specification from the RSM source code.

We created a PVS specification from the source code provided by Lockheed-Mar-
tin. The purpose of th~s exercise was to create a starting point for analysis of the
Runway Safety Monitor whose properties would not be obscured by implementa-
tion detail.

Built a situated specification of the RSM definition of an incursion zone.

We are employing survivability as a method to assist in ensuring validity, as well
as to assist implementation, in complex systems. To ensure validity, we have built
a situated specification of the incursion zone structure. This structure is the key
element of the design of the RSM algorithm that must be understood by domain
experts if they are to validate the algorithm and decide that it does what they intend
it to do. Because PVS is a formal language, it alone is not capable of ensuring that
design decisions at that stage are appropriate. We augmented our PVS specifica-
tion of the RSM algorithm with natural language designating interpretations of
many of the basic specification variables, and also a graphcal representation of the
structure over which the algorithm operates.

Analyzed the RSM requirements to determine appropriate functionality for surviv-
ability levels.

The idea behind survivability is to separate functionality that is critical to system
operation to functionality that is helpful, but not essential for aircraft safety.
Because the RSM is designed only to supplement a pilot’s existing situational
awareness, it is not flight-critical. However, recognizing an error in computation of
the system and alerting the pilot that the service is not available is important. We
worked with the Lockheed-Martin team to identify different modes of the RSM
and those modes’ criticality.

Created a PVS specification of a survivable version of the RSM

This work aimed to demonstrate how survivability could be used to increase confi-

Department of Computer Science
~ ~~

Page 13 University of Virginia

Final Report NAG- 1-02 101

dence in the correct operation of a piece of software such as the RSM. Part of such
demonstration was showing how a survivable specification might be constructed
in PVS. We constructed a survivable specification for the RSM algorithm, incorpo-
rating the specification of safe programming where it was appropriate in the soft-
ware. Such implementation decisions directly affect the way the system operates,
and how the system is designed to satisfy its requirements. Without noting them in
an abstract way such as is supported by PVS, developers cannot be sure that incor-
porating safe programming will not decrease dependability by failing to deal cor-
rectly with borderline conditions (e.g., loops that must execute more than the
prescribed number of times).

Achievements in the Development of the Zeus Toolset

Identified key PVS features that must be accessible from any user interface

The emacs interface to PVS, as developed at SRI International, includes a plethora
of methods for constructing and proving PVS specifications and theorems. For the
advanced PVS user, the emacs interface is likely to be quicker and more effective
than any interface that has a lower learning curve. Our objective was to develop an
interface that would sacrifice some of the flexibility of the emacs interface in order
to reduce the learning curve of the tool so that it could be integrated more
smoothly into existing development processes. Through a study of a number of
advanced PVS users, and the efforts to use the tool by two novice PVS users, we
identified a first set of key interface features.

Developed a system architecture to access PVS running on a UNIX machine from
a word processing program running on a Windows machine

Because PVS cannot be run on a machine with a Windows operating system, an
architecture to connect a Windows client to a PVS process running on a UNIX
server was required. We accomplished this by creating a UNIX agent program that
listens on a particular, customizable network port. When contacted by the Win-
dows Zeus plug-in process, the agent starts PVS in its “raw” mode. The agent then
pipes data between the PVS and Zeus programs, sending commands from Zeus to
PVS and sending replies from PVS to Zeus. The agent is responsible for stopping
the PVS process when the client informs it the process is no longer needed.

Revised the PVS raw interface to support inclusion of more advanced user inter-
faces (subcontracted to SRT International)

Because of the complexity of PVS’s interaction with emacs, it was not possible to

Department of Computer Science Page 14 University of Virginia

* ,

Final Report NAG-I -02 10 1

use the emacs interface through Zeus. Instead, we used the “raw’’ mode developed
for using PVS as a batch process. Unfortunately, while SRI had previously devel-
oped the raw interface for a simpler client user interface, the interface capabilities
were far short of those needed to use Zeus effectively, even for a novice user. With
SRT. as a subcontractor to make the specific changes to the PVS software, we
enhanced the interface to become one we could use to implement the necessary
Zeus functionality.

Constructed a user interface design for PVS that is more intuitive to the average
user of formal methods than the current user interface

While emacs is customizable to a significant extent, developing an interface using
structures and methods provided by Windows enabled us to design an interface
that is more visually appealing and faster to learn for the average user. We
designed the interface using input from the advanced and novice users of PVS we
consulted in determining key requirements. The design is more easily menu-
driven, and provides a more elegant proof interface, than the interface in emacs

Implemented a plug-in to FrameMaker using the user interface design

FrameMaker is a powerful document processing software package, and so devel-
oping Zeus as a plug-in to it enables the construction of PVS specifications with
formatting required for professional review and other use. The plug-in’s interface
implements the design, which is also more familiar to the Windows user than the
emacs design. Using FrameMaker as the base platform means that if a version of
Zeus to run on UNIX were desired, it could be implemented for the UNIX version
of FrameMaker with less effort than if it were designed for a document processing
program specific to one operating system.

Educated the community in the results of our efforts through presentations and
demonstrations at NASA PVS training courses

NASA Langley periodically offers PVS training courses as a service to practitio-
ners interested in state-of-the-art techniques in software development. The stu-
dents of this class are primarily of the type targeted by the Zeus effort: they would
like a way to strengthen their company’s software development practices, but with-
out investing large amounts of money in training employees to use PVS. We have
explained to them the principles of the Zeus effort, and demonstrated the more eas-
ily accessible interface of the tool so they can see the potential to use it where they
need it, without significant up-front expenditures.

Department of Computer Science Page 15 University of Virginia

NAG-1-02 101 Final Report

4. SUPPORTED STUDENTS
The following students were supported in whole or in part under this grant:

Ph.D.:
Name Elisabeth Strunk
status Graduated May 2005

Department of Computer Science Page 16 University of Virginia

Final Report NAG-1-02 101

5. PRESENTATIONS GIVEN
Seminars (not including conference presentations) describing the research being per-

formed under this grant were presented at the following institution:

Situated Formalisms: Combining Software Function and Context, Rice University,
Houston, TX, 1/2005.

Situated Formalisms: Combining Software Function and Context, U.C. Irvine, Los
Angeles, CA 1/2005.

Situated Formalisms: Combining Software Function and Context, Politecnico di
Milan, Italy 7/2004.

Situated Formalisms: Combining Software Function and Context, Praxis Critical
Systems, Bath, U.K., 12/2003.

Situated Formalisms: Combining Software Function and Context, Imperial Col-
lege of Science and Technology, London, U.K., 12/2003.

Situated Formalisms: Combining Software Function and Context, University of
Souther California, 11/2003.

Situated Formalisms: Combining Software Function and Context, University of
Newcastle, Newcastle upon Tyne, U.K., 9/2003.

Situated Formalisms: Combining Software Function and Context, University of
York, York, U.K., 9/2003.

~~ ~~

Department of Computer Science Page 17 University of Virginia

* . ' .

Final Report NAG-1-021 01

6. PUBLICATIONS
The following papers and documents were prepared from the principal investigators'

research program and were funded all or in part by the subject grant. Copies of these

papers have been supplied to the sponsor under separate cover.

Papers that were either published or accepted for publication during the reporting

period are: _ .

1. Knight, John C., Elisabeth A. Strunk, William S. Greenwell, and Kimberly S.
Wasson, Specification and Analysis of Data for Safety-Critical Systems, 22nd
International System Safety Conference, Providence RI (August 2004)
Available at:

http://www.cs.virginia.edu/-jck/publications/issc.22 .pdf

2. Wasson, Kimberly S., John C. Knight, Elisabeth A. Strunk, and Sean R. Travis,
Tools Supporting the Communication of Critical Application Domain
Knowledge in High Consequence Systems Development, SAFECOMP 2003,
The 22nd International Conference on Computer Safety, Reliability and
Security, Edinburgh, Scotland (September 2003)
Available at:

http ://www.cs.virginia.edu/-jck/publications/safecomp -2003. tools.pdf

Hanks, Kimberly S., and John C. Knight, Improving Communication of Critical
Domain Knowledge in High-Consequence Software Development: An
Empirical Study, 2 1 st International System Safety Conference, Ottawa, Canada
(August 2003)
Available at:

3.

http ://www. cs .virginia. edu/-j ck/publications/hanks. isscO3. final. pdf

Department of Computer Science Page 18 University of Virginia

~~ ~

